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Abstract

Animal models of exercise have been useful to understand underlying cellular and

molecular mechanisms. Many studies have used methods of exercise that are unduly

stressful (e.g., electrical shock to force running), potentially skewing results. Here, we

comparedphysiological andbehavioural responsesofmice after exercise inducedusing

a prodding technique that avoids electrical shock versus a traditional protocol using

electrical shock.We found that exercise performance was similar for both techniques;

however, the shock group demonstrated significantly lower locomotor activity and

higher anxiety-like behaviour. We also observed divergent effects on muscle pain;

the prodding group showed hyperalgesia immediately after exercise, whereas the

shock group showed hypoalgesia. Corticosterone concentrations were elevated to a

similar extent for both groups. In conclusion, mice that were exercised without shock

generated similar maximal exercise performance, but postexercise these mice showed

an increase in locomotor activity, less anxiety-like behaviour and alteredmuscle pain in

comparison to mice that exercised with shock. Our data suggest that running of mice

without the use of electrical shock is potentially less stressful and might be a better

technique to study the physiological and behavioural responses to exercise.
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1 INTRODUCTION

Exercise is increasingly appreciated as a means to improve human

health. A well-prescribed and supervised exercise regimen can

significantly enhance the benefits of exercise, whereas a poorly

prescribed regimen can have deleterious results (Vina et al., 2012).

To understand the physiological mechanisms that underlie the

beneficial effects of exercise, animal models have been used. These

models commonly force animals to exercise using aversive stimuli as

motivation (e.g., electrical shock, blasts of air, tail tapping). Evidence

© 2021 The Authors. Experimental Physiology© 2021 The Physiological Society

suggests that the physiological and emotional stress associated

with these techniques can significantly impact the physiological and

behavioural effects of exercise (Moraska et al., 2000; Pitcher, 2018).

Among these aversive techniques, forced running using electrical

shock might be particularly stressful. Independent of exercise,

electrical foot shock is one of the most common means for producing

measured amounts of discomfort and stress in rodents and is regularly

used to generate models of human psychiatric disease (Bali & Jaggi,

2015). In addition, stress associated with electrical stimulation has

been shown to increase motor output variability during isometric
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contraction in humans, which can impair locomotor performance

(Noteboomet al., 2001).Moreover, Knabet al. (2009) found that forced

running with electrical shock caused high intra-mouse variability in

exercise capacity, whereas distances of voluntary wheel running were

highly consistent.

Although voluntary wheel running protocols might avoid some of

the potential stress associatedwith forced exercise, voluntary exercise

is difficult to standardize. In contrast, forcedprotocols allow for precise

and uniform control of variables (velocity, incline, duration, etc.) and

allows for the testing ofmaximal exercise capacity. Here, we developed

a non-electrical shock technique to induce mice to run on a treadmill

(manual prodding) and compared it with a standard technique using

electrical shock by assessing behavioural and physiological responses

immediately after exercise.

2 METHODS

2.1 Ethical approval

All experimental procedures and protocols were approved by the

Institutional Animal Care andUseCommittee of theUniversity of Iowa

(protocol no. 1990903) and conformed to the national guidelines set

by the Association for Assessment and Accreditation of Laboratory

Animal Care. All experiments were carried out according to the

guidelines described by Grundy (2015), and we have taken all steps to

minimize the pain and suffering of the animals.

2.2 Animals

Eleven-week-old female C57BL/6J mice (Jackson Laboratory,

Sacramento, CA) were acclimated to the new environment for a

week before beginning the experiments in a temperature-controlled

room (22◦C) with a 12 h–12 h light–dark cycle and had access to

standard mouse food and water ad libitum. We studied female mice

because they exercise more readily than male mice (De Bono et al.,

2006) and they develop fatigue-induced hyperalgesia more readily

than male mice (Gregory et al., 2013). Mice were killed with CO2

according to AVMA guidelines.

2.3 Experimental design

Separate groups of mice were used in three different protocols. In

each protocol, mice were randomly assigned to exercise with electrical

shock (shock), exercise without electrical shock (prodding) and control

groups. Shockandprodding groupsunderwent an incrementalmaximal

exercise protocol, and the control group was placed on a non-moving

treadmill for approximately the same amount of time as exercise

groups (35 min). In protocol 1, mice underwent open field testing

immediately after exercise (n = 30). In protocol 2, corticosterone

measurements were obtained 5 min before and immediately and

New Findings∙ What is the central question of this study?

Forced treadmill exercise using electrical shock is

the most common technique in rodent exercise

studies. Here, we examined how the use of

electrical shock during forced treadmill exercise

affects behavioural and physiological responses

in comparison to a novel non-electrical shock

technique.∙ What is themain finding and its importance?

In comparison to mice that underwent traditional

treadmill running induced by electrical shock,

mice that underwent forced running using a novel

technique involving gentle prodding to induce

running showed: (i) higher locomotor activity;

(ii) less anxiety-like behaviour; and (iii) altered

exercise-induced muscle pain immediately after

exercise.

1 h after exercise (n = 18). In protocol 3, mice underwent muscle

withdrawal threshold (MWT) testing 1 day before (baseline) and

immediately after exercise (n = 20). Mice in protocols 1 and 3 were

analysed for exercise performance on treadmill exercise testing.

2.4 Treadmill exercise protocols

All groups were acclimated to the treadmill (Columbus Instruments,

Columbus, OH) for 5 days for 30 min/day, with gradually increasing

speed and incline as previously described (Khataei et al., 2020), with

electrical shock grids (1 mA, 1 Hz, 200 ms duration) at the rear of the

treadmill to encourage continued ambulation. For maximal exercise

testing, mice were placed individually on a non-moving treadmill [20◦
incline throughout; 15–25◦ incline is best to achieve maximal O2

uptake inmice (Kemi et al., 2002)] for 10min, followedby10minwarm-

up at 6 m/min with shock bars on. For the shock group, the electrical

shock was left on throughout the exercise protocol. For the prodding

group, we turned off the shock grids at the beginning of testing and

instead used gentle prodding with a tongue depressor to encourage

running as needed (Conner et al., 2014). After warm-up, the speed

was increased to 8 m/min, and then increased by 2 m/min every 3 min

(accelerations were 2 m/min2) until exhaustion. For the shock group,

exhaustion was defined as the point at which mice stayed on the shock

grids for >10 s and did not resume running. For the prodding group,

exhaustion was defined when mice stayed at the end of treadmill and

did not resume running after 10 consecutive proddings in 10 s.
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2.5 Muscle withdrawal threshold

The MWT was measured by applying force-sensitive tweezers to the

belly of the gastrocnemius muscle as previously described (Skyba

et al., 2005), whereby lower thresholds indicate greater sensitivity

to mechanical stimuli. Briefly, mice were acclimated to the testing

protocol in two 5 min sessions on 3 days. The mice were gently

restrained in a gardener’s glove, the hindlimbwas held in extension and

the muscle squeezed with progressive force with the force-sensitive

tweezers until the mouse withdrew its hindlimb. Three trials for each

hindlimbwere averaged.

2.6 Corticosterone radioimmunoassay

Adrenocortical activitywasmeasuredbyobtaining blood samples from

the tail vein (Anderson et al., 2014, 2019). A small longitudinal incision

was made at the distal tip of the tail with a sterile blade while mice

were restrained. Blood samples (∼20 µl) were collected into chilled

plastic microfuge tubes containing EDTA and aprotinin, centrifuged,

and fractionated for storage of plasma at −80◦C until assayed.

Silver nitrate was applied to achieve haemostasis. Plasma cortico-

sterone was measured without extraction, using an antiserum raised

in rabbits against a corticosterone–bovine serum albumin conjugate,

with 125I-corticosterone–bovine serum albumin as the tracer (MP

Biomedicals). The sensitivity of the assay was 8 ng/ml; intra- and inter-

assay coefficients of variation were 5 and 10%, respectively.

2.7 Open field test

For the assessment of locomotor activity and anxiety-like behaviour,

mice were subjected to the open field test immediately after

exercise. Horizontal movements and vertical (rearing) movements

were quantified as the number of photobeam breaks during 30 min

in a lighted chamber (40.6 cm wide × 40.6 cm deep × 36.8 cm

high; 1500 lux; 16 × 16 photobeams to record horizontal movements

and 16 rearing photobeams, with 2.54 cm photobeam spacing; San

Diego Instruments). Centre activity was defined as the percentage

of horizontal beam breaks occurring in the centre of the open field

(25.5 cm× 25.5 cm) per total horizontal beam breaks.

2.8 Statistical analysis

GraphPad Prism (San Diego, California, US; v.8.0) was used to analyse

data statistically. Bar graphs represent mean values ± SD. One-way

and two-way ANOVA, Student’s unpaired t tests and F-tests were used

to analyse the results. If significant differences were observed, the

indicated post hoc tests were performed as described in the figure

legends. Sample sizes for each experimental protocol were determined

based on the effect sizes for changes in the variable from our previous
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F IGURE 1 Comparison of maximal exercise capacity using
electrical shock or proddingmethods. Time to exhaustion was
measured in shock and prodding groups during incremental treadmill
exercise. Although there was no difference between themeans of
groups (Welch’s t test; P> 0.05, n≥ 16), the variances of two groups
were significantly different (F-test; F= 6.402, n1= 20, n2= 16,
P< 0.001). n1, number of mice in Shock group; n2, number of mice in
Prodding group

and pilot studies [α= 0.05, β= 0.8; G*Power v.3.1 software (Faul et al.,

2007)].

3 RESULTS

3.1 Exhaustive exercise with manual prodding
elicited similar exercise performance to electrical
shock

In pilot studies, we observed that running mice on a treadmill using

a standard technique with an electrical shock grid at the back of the

treadmill to induce running caused signs of stress (increased freezing

behaviour, urination anddefecation, vocalization andescapebehaviour

during and immediately after running). Therefore, we used a novel

protocol whereby we turned the shock bars off and, instead, used

gentle prodding with a tongue depressor to induce running (Conner

et al., 2014; Khataei et al., 2020). We first compared the maximal

exercise capacity using either the electrical shock (shock group) or

the prodding technique (prodding group) to induce running and found

no difference in the time to exhaustion between groups (Figure 1).

Interestingly, the variance from the mean was significantly less for the

prodding group comparedwith the shock group.

3.2 Exercise with shock caused less locomotor
activity and increased anxiety-like behaviour after
exercise in comparison to exercise with prodding

Immediately after exercise, we used an open field assay to record

the locomotor activity of the mice. Control mice were placed on a
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F IGURE 2 Locomotor activity during
30min in an open field immediately after
exhaustive exercise. (a) Representative vertical
movement (rearing) zonemaps of single mice
from the shock and prodding groups. Each dot
represents a rearing event. (b) Summary data
for vertical activity. One-way ANOVA revealed
a significant difference between groups
(F2,27 = 6.55, P< 0.01, n≥ 9). Tukey’s test
found that the shock group showed less rearing
comparedwith the control (**P< 0.01) and
prodding (*P< 0.05) groups. (c) Representative
zonemaps of horizontal movements of single
mice from the shock and prodding groups.
(d) Summary data for horizontal activity.
One-way ANOVA revealed a significant
difference between groups (F2,27 = 14.10,
P< 0.0001, n≥ 9). Tukey’s test showed that
both shock (****P< 0.0001) and prodding
(*P< 0.05) groupsmade fewermovements
comparedwith the control group, and the
shock groupmade fewermovements than the
prodding group (*P< 0.05). (e) Centre relative
to total horizontal movements per 5min
interval. (f) Total (percentage) horizontal
centre activity. One-way ANOVA showed a
significant difference between groups
(F2,27 = 9.80, P< 0.001, n≥ 9). Tukey’s test
found that the shock group showed less centre
activity comparedwith the control
(***P< 0.001) and prodding (*P< 0.05) groups

non-moving treadmill before open field recording. To assess post-

exercise fatigue, wemeasured vertical (rearing) and horizontal activity

for 30 min in an open field chamber (Huang et al., 2018; Kobayashi

et al., 2008). The prodding group of mice exhibited significantly more

vertical movements compared with the shock group and were similar

to the control group (Figure 2a,b). The prodding group also exhibited

more horizontal movements than the shock group (Figures 2c,d).

As a measure of anxiety-like behaviour, we tracked the percentage

of horizontal movements in the centre relative to the total movements

immediately after exercise. The tendency of mice to avoid the brightly

lit centre of an open field and remain near the walls is an index of

anxiety (Crawley, 1985). Similar to control mice, the prodding group

began to habituate to the novelty of the chamber during the 30 min

period and exhibited increasing centre movements (Figures 2e,f). In

contrast, the shock group continued to avoid the centre. These results

suggest that the prodding group ofmicewere less fatigued and showed

less anxiety-like behaviour after exercise than the shock group.

In separate groups of mice, we tested whether exercise with

electrical shock versus prodding would generate differential increases

in plasma corticosterone, the main glucocorticoid in mice (Coleman

et al., 1998). In the control group, corticosterone concentrations

were not significantly altered immediately and 1 h after 35 min

exposure to a non-moving treadmill (Figure 3). In contrast, cortico-

steronewas increased significantly and to a similar extent immediately

after exhaustive exercise and remained elevated 1 h later in both

shock and prodding groups compared with their respective baseline

measurements.

3.3 Exercise with or without shock produced
opposite effects on immediate exercise-induced
muscle pain

The peaks of exercise, particularly that involving high-intensity muscle

contractions, are commonly associated with muscle pain, referred to

here as immediate exercise-induced muscle pain (IEIP; Khataei et al.,

2020). We measured IEIP after exhaustive exercise in the shock,

prodding and control groups of mice. As a measure of muscle pain, we

recorded theMWT, whereby force-sensitive tweezers were applied to

the gastrocnemius muscle until the limbwas withdrawn (a lowerMWT
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F IGURE 3 Plasma corticosterone concentrations after exhaustive
exercise. Corticosterone wasmeasured before (baseline) and
immediately and 1 h after exercise. Two-way repeated-measures
ANOVA showed that there was a significant group effect (F2,15 = 5.18,
P< 0.05), time effect (F1.71,25.64 = 18.59, P< 0.0001) and interaction
between time and group (F4,30 = 3.09, P< 0.05, n= 6). Tukey’s test
revealed that corticosterone increased immediately and 1 h after
exercise for experimental groups comparedwith their respective
baseline (*P< 0.05), but was unchanged for the control group over
time, and there were no differences between shock and prodding
groups

indicates increasedpain, or hyperalgesia), at baseline (1daybefore) and

immediately after exhaustive exercise. In comparison to the control

group, we found significant and divergent differences between the

shock and prodding groups after exercise. The MWT was increased

immediately after exercise for the shock group, and itwas lower for the

prodding group compared with their baseline values (Figure 4). These

results indicate that the prodding group developed muscle hyper-

algesia associated with intense exercise (IEIP), whereas exercise with

shock caused a paradoxical muscle hypoalgesia.

4 DISCUSSION

4.1 Forced running and electrical shock are
stressful to mice

Ours is the first study to compare theeffects ofmanual proddingversus

electrical shock as a means to force treadmill exercise in mice. Despite

achieving the same level of exercise, the two groups demonstrated

significantly different locomotor activity patterns in an open field

assay immediately after exercise. The shock groupdemonstrated fewer

vertical and horizontal movements and spent less time in the centre

of the chamber than either the control or the prodding group of

mice. Although open field behaviour is driven by multiple different

motivations, avoidance of the chamber centre is a validated means to

measure anxiety in mice (Crawley, 1985; Treit & Fundytus, 1988). In

addition, both exercise groups had equally increased concentrations of

corticosterone after exercise.
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F IGURE 4 Muscle withdrawal threshold (MWT) immediately
after exhaustive exercise. TheMWTwasmeasured 1 day before
(baseline) and immediately after exercise. Two-way
repeated-measures ANOVA showed a significant group effect
(F2,17 = 3.86, P< 0.05) and an interaction between group and time
(F2,17 = 36.07, P< 0.0001, n≥ 6). Sidak’s test found thatMWTwas
higher after exercise comparedwith baseline for the shock group
(***P< 0.0001), lower comparedwith baseline for the prodding group
(*P< 0.01), and there was a significant difference between shock and
prodding groups after exercise (###P< 0.0001)

Our results are consistent with others showing that forced running

is stressful for rodents, as measured by both physiological markers

and assays of behaviour. Compared with voluntary exercise on a

running wheel, forced exercise of mice and/or rats diminished the

time spent in the centre of an open field, increased defecation and

increased faecal corticosterone (Leasure & Jones, 2008; Svensson

et al., 2016). Moreover, the stress associated with forced exercise can

be maladaptive, thus potentially overriding the benefits of exercise.

For example, rats that underwent voluntary exercise had better motor

recovery after stroke compared with rats that underwent forced

exercise (Ke et al., 2011).

Although diminished locomotor activity might be another sign of

increased stress and anxiety, rearing and horizontal movements within

an open field assay have also been used as measures of fatigue after

exercise (Huang et al., 2018; Kobayashi et al., 2008). Although the two

exercise groups of mice exercised to the same extent, the diminished

movements of the shock group after exercise suggest that they

experienced greater muscle fatigue. Although some degree of stress

can enhance exercise performance, excessive physiological stress has

been shown to increase central fatigue, alter motor neural output

and diminish motor function (Marker et al., 2016; Noteboom et al.,

2001). Additionally, stress induced by electrical stimulation increases

the variability of motor output during isometric contraction, which

can impair locomotor performance (Noteboom et al., 2001). Inter-

estingly, we found greater variability of exercise performance in the

shock group comparedwith theprodding group, althoughwe recognize

that the very different means to determine exhaustion might have

contributed to the differences in variability.
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If the shock group of mice experienced greater stress/anxiety

than the prodding group, why was corticosterone elevated equally

(∼10-fold) in both groups after exercise? Although corticosterone is a

commonly measured marker of pathological stress, acute exercise also

increases cortisol/corticosterone (CORT) concentrations in humans

and rodents (Chen et al., 2017; Viru, 1992). In fact, corticosterone

concentrations are increased in rats immediately after voluntary

wheel running, suggesting that exercise increases corticosterone

concentrations independent of the stress associated with forced

exercise (Griesbach et al., 2012). Moreover, exhaustive treadmill

running in rats (using light air puffs to induce running) generated

higher corticosterone concentrations (∼5-fold increase) compared

with 60min of stress-inducing immobilization (∼3-fold increase) (Hand
et al., 2002). It is interesting to speculate why increases in CORT

associated with chronic stress, including administration of exogenous

CORT, are detrimental to neural adaptation/function and predictive

of negative health outcomes in a variety of disease contexts, whereas

the increase in CORT that occurs with exercise is generally believed

to be an adaptive response and is associated with improvement in

cognitive function and health (Adlard & Cotman, 2004; Chen et al.,

2017).

4.2 Stress- and exercise-induced hypo- versus
hyperalgesia

Strenuous exercise is associated with muscle pain during and

immediately after cessation of exercise (Miles & Clarkson, 1994;

Park & Rodbard, 1962), which we termed IEIP (Khataei et al., 2020).

The mechanism involves activation of type III and IV muscle afferents

by metabolites and other chemicals that accumulate within exercising

muscle and, perhaps, mechanical injury during eccentric contractions

(Katz et al., 1935; Rodbard & Pragay, 1968). We previously showed

that forced maximal treadmill exercise using manual prodding causes

IEIP in mice as measured by a reduction in MWT. Moreover, we found

that the acid-sensing ion channels (ASICs) are required for IEIP; mice

with a genetic lack of the subunit ASIC3 experienced no change in

MWT immediately after exercise (Khataei et al., 2020). Here, we

found that mice that underwent forced maximal treadmill exercise

induced by shock had the opposite result. The shock group had an

increase in MWT compared with their baseline, suggesting that they

experienced an increase in pain threshold, or hypoalgesia, immediately

after exercise.

Although exercise training is an effective therapy for chronic pain

conditions, and even a single bout of exercise can increase pain

thresholds in humans, termed exercise-induced hypoalgesia (Naugle

et al., 2012; Rice et al., 2019), most of these studies measure pain at

a site that is remote from the contracting muscle, and they generally

do so with some time delay from the cessation of exercise. Thus,

the mechanisms that underlie exercise-induced hypoalgesia are most

certainly from those that cause IEIP. Moreover, given that both shock

and prodding groups achieved the same level of exercise on the

treadmill, it is unlikely that the degree of exercise accounts for the

differences inMWT immediately after exercise. Thus,wedonotbelieve

that exercise-induced hypoalgesia, as defined by the mechanisms

described in previous studies, accounts for the increase in MWT in the

shock group. Instead, we suspect that this hypoalgesia was caused by

the additional stress associated with electrical shock.

Although repeated and prolonged exposure to stressors over

extended periods of time tends to cause amaladaptive exacerbation of

pain responses (stress-induced hyperalgesia), if the aversive stimulus is

acute, pain sensation is generally suppressed (stress-induce analgesia

or hypoalgesia). This hypoalgesia is believed to be an adaptive response

to acute stress as part of the fight-or-flight response (Bolles &

Fanselow, 1980). There are a number of studies in the literature

reporting stress-induced hypoalgesia in rodents elicited by foot shock

(Ferdousi & Finn, 2018). In fact, one group has used forced exercise

using shock to induce treadmill walking as a means to induce stress-

induced analgesia in mice (Furuta et al., 2003). Thus, we believe that

the normal IEIP caused by strenuous exercise (as seen in the prodding

group) was overridden by stress-induced hypoalgesia in the shock

group.

4.3 Implications for animal models of exercise
research

Although exercise has been used successfully as a preventive or

therapeutic strategy to treat various conditions, including chronic

pain (Law & Sluka, 2017), chronic fatigue syndrome (Larun et al.,

2017), cardiac diseases (Zhang et al., 2016) and neurodegenerative

diseases (Campos et al., 2016), a poorly prescribed exercise regimen

can exacerbate such conditions. Whether exercise is beneficial or

not depends upon the intensity, type and duration of exercise and,

perhaps, the associated stress (Pitcher, 2018; Sluka et al., 2018).

Both exercise and stress activate the sympathetic/adrenergic and

corticosteroid systems. Interestingly, when stress responses are

activated by aversive, prolonged and unescapable stimuli, they tend

to cause maladaptive alterations of homeostasis, whereas exercise

generally promotes beneficial adaptive responses. The use of animal

models of exercise is crucial to our understanding of these under-

lying mechanisms. Forced running is inherently stressful to rodents;

however, it has the advantage over voluntary wheel running in that

the degree of exercise can be prescribed and uniform within a group.

Our data here show that different exercise techniques to run mice

on a treadmill can cause profoundly different behavioural responses

immediately after exercise, including fatigue, anxiety and pain and,

most certainly, other behavioural and physiological responses.
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